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T cells use force for target cell killing

* T cell cytotoxicity correlates with the exertion of mechanical force

* Force exertion is associated with enhanced perforin pore formation on
the target cell

* Cell tension promotes perforin pore formation
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T cells use force for target cell killing
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T cells use force for target cell killing
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Mechanical landscape of cancer
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Mechanical forces and cancer progression

Normal cell  Tumor cell

O

—~L 0 v
O Bf o
O ) i (31 (@) | O Q

A o e 9
Cell-cell The tumor W
O microenvironment /
SV 7
4 3
C
OTo

Cell-ECM <— |ntracellulartension
<— ECMresistance

Metastatic
niche

<«— Compressive forces <« Tensile forces <« Shear forces



Viscous cycle of the cancer

« ECM stiffening = higher cellular tension and solid stress
« Tumor expansion = ECM stiffening and vascular malfunctioning
* Vascular issues = shear stress and interstitial pressure
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Mechanoreciprocity

* (ells are continuously exposed to physical forces
* Hydrostatic pressure, shear stress, compression, tension
* Cells dynamically adapt to force
* Modifying behavior and remodelling the microenvironment
* Sense forces and adjust contractility

* Loss of mechanoreciprocity = cancer

 Abnormal mechanics of tissues = cancer
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Mechano-adaptation

* C(ells are tuned to the materials properties of their matrix

Increasing stiffness in breast tumours
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Mechano-adaptation

e Tumors are often detected as a sosaaes AR
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Elastography

Static and dynamic methods
* Manual compression and ultrasound imaging

 Acoustic radiation force with focused ultrasound
* Shear-wave elasticity imaging (shear modulus]

* Acoustic radiation force creates the push
* How fast the resulting shear wave travels through the tissue

* Mechanical vibrator creates a shear wave and MRI imaging measured
the velocity of the wave
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Elastography
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MRI Elastography
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MRI Elastography
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Ultrasound Elastography
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Optical Microelastography
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Mechano-adaptation

* Epithelial cancers are characterized by an altered tissue tensional
homeostasis

Differences in rheology

Increased cell-generated force in the transformed cells

Increased compressive stress due to the solid state pressure
generated by the expanding mass (i.e. uncontrolled proliferation)
Matrix stiffening due to the desmoplastic response (growth of
fibrous or connective tissue]

Increased interstitial pressure due to leaky vasculature and poor
lymphatic drainage
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Solid stress and elastic energy

* Deformation is a measure of the stored elastic energy
* Deformation is mapped by 3D HD ultrasound
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Solid stress and elastic energy

* 3D finite element model
* Convert 20 map of deformation into strain tensor g;
* Use strain tensor to calculate stress tensor g; (Hooke's law]
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Solid stress and elastic energy

Breast tumour (MMTV-M3C) Pancreatic tumour (AK4.4) Brain tumour (U87) Cut plane

06 10 ad -
03 | B : Tumour 03
0.0 0.2 0.0
-0.3 i -0.2

2mm 2mm

Tensile
+1.04 i +7.50
+0.75 +5.62
" 1 +0.58 +3.77
+0.38 +1.85
+0.19 -0.03
-0.00 -1.92
-0.30 -3.80

Compressive

+0.21
| +0.13
+0.09
+0.04
-0.01
-0.06
-0.10

1.00 0.15
0.75 0.10
0.50 0.05
0.25 , — ” 0.00
0.00 -2 . ~ - -0.05 }

_0.25|Compressive . ~ . N— . . .
0 2 4 6 0; 2 4 6 8 10
Position (mm) Position (mm) Position (mm)

-0.10

Solid stress 7, (kPa) ~ Solid stress &, (kPa)




Solid stress and elastic energy

e Smaller tumors
e Tumor slices: a more sensitive method
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Solid stress and elastic energy

* Inhomogeneities in the in-plane stresses
* (ut-of-plane bending and buckling
« Complex shape = non-uniformity and residual compression and tension

MMTV-M3C AK4 .4
e Lymph node,
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In situ measurements of solid stress

b Breast tumour (MMTV-M3C) with solid stress
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Nanomechanical signature of breast cancer

 AFM measurements on biopsies

Testing human breast biopsies by IT-AFM

Bicompatible glue
Teflon support
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Nanomechanical signature of breast cancer
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Hydrodynamic stretching

* Probing single cell deformability at 2,000 cells/s
* Inertial focusing and extensional flow
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Hydrodynamic stretching

* Probing single cell deformability at 2,000 cells/s
* Inertial focusing and extensional flow

Undifferentiated hESC 900 ulL/min

At the optimized flow rate cells reach

the center of the extensional flow




Mechanical profiling of pleural effusions for cancer
diagnosis
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Real-time deformability cytometry

* Probing single cell deformability of >1 00,000 cells at 100 cells/s
a d
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Realtime deformability cytometry

« 2,000 to 4,000 fps
* 1 us LED pulses
* Flow rate: 10cm/s
* Realtime measurement
* Image processing
* Cell deformation is dependent on
cell size
* Hydrodynamic model to calculate
the shear stress and pressure
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Viscosity

* (Cancer cells move and spread faster in thicker extracellular fluids

 Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4
dependent mechanical memory through transcriptional control of the
Hippo pathway, leading to increased migration in zebrafish, extravasation
in chick embryos and lung colonization in mice.
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Viscosity

* (Cancer cells move and spread faster in thicker extracellular fluids

* Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4
dependent mechanical memory through transcriptional control of the
Hippo pathway, leading to increased migration in zebrafish, extravasation
in chick embryos and lung colonization in mice.
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Tumor-induced angiogenesis

Proliferating cell

Basal lamina

VEGF
gradient

35



Tumor-induced angiogenesis

-3 .""’;n p ,Y»"I\\\.L
* Vasculature induced by a tumor [central brownish-yellow area) in the
thigh muscle. The fanlike appearance of newly induced vessels.
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Intussusceptive (splitting) angiogenesis
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* Insertion of tissue pillars into the vessels leads to formation of new vessels
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Tumor-induced angiogenesis

Interstitial
pressure

* Elevated interstitial pressure Q
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Metastasis

Responsible for >30% of cancer-related deaths
Physical and mechanical interactions
* Mligration through collagen-rich scaffold
* Penetrating endothelial cell-cell junctions
* Interplay between cell velocity and adhesion in the vessel

Primary tumour Vascularization Detachment Intravasation

(_» Circulating Adhesion to Growth of

tumour cell blood vessel wall Extravasation secondary tumour
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Metastasis
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Invasion and intravasation

» Epithelial to mesenchymal transition

* Loss of adhesion through downregulation of E-cadherin

e (Change in morphology
* Sqgueezing between blood vessels
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tumour membrane
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Arrest of circulating tumor cells

 Tumor cells smaller than the diameter of the blood vessel
* Local flow pattern
* (ollisions with host cells and vessel walls
* Arrest: attachment to the vessel wall

* Tumor cells larger than the diameter of the blood vessel
* Mechanical trapping

Circulating tumour cell trajectory

Circulating
tumour cell

dvessel > dcell




Circulating tumor cells
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Circulating tumor cells
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Circulating tumor cells




Circulating tumor cells




Capture and extravasation

* Rolling with and without slipping
* Transient vs persistent (firm]) adhesion
* Shear stress and bond lifetime

a Circulating tumour cell
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Breast cancer on a chip

a Early-stage primary tumour
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Neovascularization on a chip
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Lung cancer on a chip
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Lung cancer on a chip
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Metastatic cancer on a chip
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Metastatic cancer on a chip
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Metastatic cancer on a chip




Metastatic cancer on a chip
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Interstitial flow
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Compression-induced invasion
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Cuboids

Patient Biopsy Dissection Transfer In vitro Culture Drug Treatment

Histology
Omics
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Vibratome sectioning
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